Affine and toric arrangements
نویسندگان
چکیده
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un arrangement hyperplans centrals aux arrangements affines et toriques. Pour les arrangements toriques, nous généralisons aussi les résultats fondamentaux de Zaslavsky sur le nombre de régions.
منابع مشابه
Affine and Toric Hyperplane Arrangements
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.
متن کاملCombinatorics and invariants of toric arrangements
Given the toric (or toral) arrangement defined by a root system Φ, we classify and count its components of each dimension. We show how to reduce to the case of 0-dimensional components, and in this case we give an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of Φ. Then we compute the Euler characteristic and the Poincaré polynomial of the complement of the arr...
متن کاملTropical Compactifications
We study compactifications of very affine varieties defined by imposing a polyhedral structure on the non-archimedean amoeba. These com-pactifications have divisorial boundary with combinatorial normal croosings. We consider some examples including M 0,n ⊂ M 0,n (and more generally log canonical models of complements of hyperplane arrangements) and tropical recompactifications of Chow quotients...
متن کاملOrbifold Cohomology of Hypertoric Varieties
Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed as abelian hyperkähler quotients T C////T of a quaternionic affine space. Just as symplectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties are intimately related to the combinatorics of hyperplane arrangements. By developing hyperkähler analogues of symplectic techniques ...
متن کاملToric partial orders
We define toric partial orders, corresponding to regions of graphic toric hyperplane arrangements, just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric posets correspond to finite posets under the equivalence relation generated by converting minimal elements into maximal elements, or sources into sinks. We derive toric analogues for se...
متن کامل